Ngoc Thanh Nguyen · Bogdan Trawiński Hamido Fujita · Tzung-Pei Hong (Eds.)

LNAI 9622

Intelligent Information and Database Systems

8th Asian Conference, ACIIDS 2016 Da Nang, Vietnam, March 14–16, 2016 Proceedings, Part II

Lecture Notes in Artificial Intelligence 9622

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel University of Alberta, Edmonton, Canada
Yuzuru Tanaka Hokkaido University, Sapporo, Japan
Wolfgang Wahlster DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann DFKI and Saarland University, Saarbrücken, Germany More information about this series at http://www.springer.com/series/1244

Ngoc Thanh Nguyen · Bogdan Trawiński Hamido Fujita · Tzung-Pei Hong (Eds.)

Intelligent Information and Database Systems

8th Asian Conference, ACIIDS 2016 Da Nang, Vietnam, March 14–16, 2016 Proceedings, Part II

Editors Ngoc Thanh Nguyen Wrocław University of Technology Wrocław Poland

Bogdan Trawiński Wrocław University of Technology Wrocław Poland Hamido Fujita Iwate Prefectural University Takizawa Japan

Tzung-Pei Hong National University of Kaohsiung Kaohsiung Taiwan

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Artificial Intelligence ISBN 978-3-662-49389-2 ISBN 978-3-662-49390-8 (eBook) DOI 10.1007/978-3-662-49390-8

Library of Congress Control Number: 2016930675

LNCS Sublibrary: SL7 - Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

ACIIDS 2016 was the eighth event of the series of international scientific conferences for research and applications in the field of intelligent information and database systems. The aim of ACIIDS 2016 was to provide an internationally respected forum for scientific research in the technologies and applications of intelligent information and database systems. ACIIDS 2016 was co-organized by the Vietnam–Korea Friendship Information Technology College (Vietnam) and Wrocław University of Technology (Poland) in co-operation with IEEE SMC Technical Committee on Computational Collective Intelligence, Bina Nusantara University (Indonesia), Ton Duc Thang University (Vietnam), and Quang Binh University (Vietnam). It took place in Da Nang (Vietnam) during March 14–16, 2016.

The ACIIDS conference series is well established. The first two events, ACIIDS 2009 and ACIIDS 2010, took place in Dong Hoi City and Hue City in Vietnam, respectively. The third event, ACIIDS 2011, took place in Daegu (Korea), while the fourth event, ACIIDS 2012, took place in Kaohsiung (Taiwan). The fifth event, ACIIDS 2013, was held in Kuala Lumpur in Malaysia, while the sixth event, ACIIDS 2014, was held in Bangkok, Thailand. The last event, ACIIDS 2015, took place in Bali (Indonesia).

We received papers from 36 countries all over the world. Each paper was peer reviewed by at least two members of the international Program Committee and international reviewer board. Only 153 papers with the highest quality were selected for oral presentation and publication in the two-volume proceedings of ACIIDS 2016.

Papers included in the proceedings cover the following topics: knowledge engineering and the Semantic Web, social networks and recommender systems, text processing and information retrieval, database systems and software engineering, intelligent information systems, decision support and control systems, machine learning and data mining, computer vision techniques, intelligent big data exploitation, cloud and network computing, multiple model approach to machine learning, advanced data mining techniques and applications, computational intelligence in data mining for complex problems, collective intelligence for service innovation, technology opportunity, e-learning and fuzzy intelligent systems, analysis of image, video, and motion data in life sciences, real-world applications in engineering and technology, ontology-based software development, intelligent and context systems, modeling and optimization techniques in information systems, database systems, and industrial systems, smart pattern processing for sports, and intelligent services for smart cities.

Accepted and presented papers highlight the new trends and challenges of intelligent information and database systems. The presenters showed how new research could lead to novel and innovative applications. We hope you will find these results useful and inspiring for your future research.

We would like to extend our heartfelt thanks to Mr. Jarosław Gowin, the Deputy Prime Minister of the Republic of Poland and Minister of Science and Higher Education for his support and honorary patronage over the conference.

We would like to express our sincere thanks to the honorary chairs, Mr. Minh Hong Nguyen (Deputy Minister of Information and Communications, Vietnam), and Prof. Tadeusz Więckowski (Rector of the Wrocław University of Technology, Poland) for their support.

Our special thanks go to the program chairs, special session chairs, organizing chairs, publicity chairs, liaison chairs, and local Organizing Committee for their work for the conference. We sincerely thank all members of the international Program Committee for their valuable efforts in the review process, which helped us to guarantee the highest quality of the selected papers for the conference. We cordially thank the organizers and chairs of special sessions, who essentially contributed to the success of the conference.

We also would like to express our thanks to the keynote speakers (Prof. Tzung-Pei Hong, Prof. Saeid Nahavandi, Prof. Jun Wang, and Prof. Piotr Wierzchoń) for their interesting and informative talks of world-class standard.

We cordially thank our main sponsors, Vietnam–Korea Friendship Information Technology College (Vietnam), Wrocław University of Technology (Poland), IEEE SMC Technical Committee on Computational Collective Intelligence, Bina Nusantara University (Indonesia), Ton Duc Thang University (Vietnam), and Quang Binh University (Vietnam). Our special thanks are due to Springer for publishing the proceedings, and all our other sponsors for their kind support.

We wish to thank the members of the Organizing Committee for their very substantial work and the members of the local Organizing Committee for their excellent work.

We cordially thank all the authors for their valuable contributions and other participants of this conference. The conference would not have been possible without their input.

Thanks are also due to many experts who contributed to making the event a success.

March 2016

Ngoc Thanh Nguyen Bogdan Trawiński Hamido Fujita Tzung-Pei Hong

Conference Organization

Honorary Chairs

Minh Hong Nguyen	Deputy Minister of Information and Communications, Vietnam
Tadeusz Więckowski	Rector of Wrocław University of Technology, Poland
General Chairs	
Ngoc Thanh Nguyen Bao Hung Hoang	Wrocław University of Technology, Poland Vietnam–Korea Friendship Information Technology College, Vietnam

Program Chairs

Bogdan Trawiński	Wrocław University of Technology, Poland
Tzung-Pei Hong	National University of Kaohsiung, Taiwan
Hamido Fujita	Iwate Prefectural University, Japan
Duc Dung Nguyen	IOIT – Vietnamese Academy of Science and Technology,
	Vietnam

Special Session Chairs

Dariusz Król	Wrocław University of Technology, Poland
Lech Madeyski	Wrocław University of Technology, Poland
Bay Vo	Ton Duc Thang University, Vietnam

Publicity Chairs

Khanh Van Hoang Thi	Vietnam-Korea Friendship Information Technology
	College, Vietnam
Adrianna	Wrocław University of Technology, Poland
Kozierkiewicz-	

Liaison Chairs

Hetmańska

Ford Lumban Gaol	Bina Nusantara University, Indonesia
Tan Hanh	Posts and Telecommunications Institute of Technology,
	Vietnam

Mong-Fong Horng	National Kaohsiung University of Applied Sciences,
	Taiwan
Jason J. Jung	Chung-Ang University, Korea
Ali Selamat	Universiti Teknologi Malaysia, Malaysia

Organizing Chairs

The Son Tran	Vietnam-Korea Friendship Information Technology
	College, Vietnam
Elżbieta Kukla	Wrocław University of Technology, Poland

Local Organizing Committee

Marcin Maleszka	Wrocław University of Technology, Poland
Zbigniew Telec	Wrocław University of Technology, Poland
Bernadetta Maleszka	Wrocław University of Technology, Poland
Marcin Pietranik	Wrocław University of Technology, Poland
Nguyen Quang Vu	Vietnam–Korea Friendship Information Technology
	College, Vietnam
Ngo Viet Phuong	Vietnam–Korea Friendship Information Technology
	College, Vietnam
Le Tu Thanh	Vietnam–Korea Friendship Information Technology
	College, Vietnam

Webmaster

Jarosław Bernacki Wrocław	University	of Technology,	Poland
---------------------------	------------	----------------	--------

Steering Committee

Ngoc Thanh Nguyen (Chair)	Wrocław University of Technology, Poland
Longbing Cao	University of Technology Sydney, Australia
Suphamit Chittayasothorn	King Mongkut's Institute of Technology Ladkrabang, Thailand
Ford Lumban Gaol	Bina Nusantara University, Indonesia
Tu Bao Ho	Japan Advanced Institute of Science and Technology, Japan
Tzung-Pei Hong	National University of Kaohsiung, Taiwan
Dosam Hwang	Yeungnam University, Korea
Lakhmi C. Jain	University of South Australia, Australia
Geun-Sik Jo	Inha University, Korea
Jason J. Jung	Chung-Ang University, Korea
Hoai An Le-Thi	University of Lorraine, France

Toyoaki Nishida	Kyoto University, Japan
Leszek Rutkowski	Technical University of Czestochowa, Poland
Ali Selamat	Universiti Teknologi Malaysia, Malaysia

Keynote Speakers

Tzung-Pei Hong	National University of Kaohsiung, Taiwan
Saeid Nahavandi	Deakin University, Victoria, Australia
Jun Wang	City University of Hong Kong, Hong Kong, SAR China
Piotr Wierzchoń	Adam Mickiewicz University in Poznań, Poland

Special Sessions Organizers

1. Multiple Model Approach to Machine Learning (MMAML 20165)

Tomasz Kajdanowicz	Wrocław University of Technology, Poland
Edwin Lughofer	Johannes Kepler University Linz, Austria
Bogdan Trawiński	Wrocław University of Technology, Poland

2. Workshop on Real-World Applications in Engineering and Technology (RWAET 2016)

Pandian Vasant	Universiti Teknologi PETRONAS, Malaysia
Vish Kallimani	Universiti Teknologi PETRONAS, Malaysia
Sujan Chowdhury	Universiti Teknologi PETRONAS, Malaysia

3. Special Session on Intelligent Services for Smart Cities (IS4SC 2016)

David Camacho	Universidad Autónoma de Madrid, Spain
Jason J. Jung	Chung-Ang University, Korea
Paulo Novais	University of Minho, Portugal
Salvatore Venticinque	Seconda Università Degli Studi di Napoli, Italy

4. Special Session on Ontology-Based Software Development (OSD 2016)

Zbigniew Huzar	Wrocław University of Technology,	Poland
Bogumiła Hnatkowska	Wrocław University of Technology,	Poland

5. Special Session on Intelligent Big Data Exploitation (IBDE 2016)

Gottfried Vossen	University of Münster, Germany
Stuart Dillon	University of Waikato, New Zealand

6. Special Session on Intelligent and Context Systems (ICxS 2016)

Maciej Huk	Wrocław University of Technology, Poland
Jan Kwiatkowski	Wrocław University of Technology, Poland
Anita Pinheiro	Halmstad University, Sweden
Sant'Anna	

7. Special Session on Analysis of Image, Video, and Motion Data in Life Sciences (IVMLS 2016)

Kondrad Wojciechowski	Polish-Japanese Academy of Information Technology,
	Poland
Marek Kulbacki	Polish-Japanese Academy of Information Technology,
	Poland
Jakub Segen	Gest3D, USA
Andrzej Polański	Silesian University of Technology, Poland

8. Special Session on Collective Intelligence for Service Innovation, Technology Opportunity, E-Learning, and Fuzzy Intelligent Systems (CISTEF 2016)

Chao-Fu Hong	Aletheia University, Taiwan
Tzu-Fu Chiu	Aletheia University, Taiwan
Kuo-Sui Lin	Aletheia University, Taiwan

9. Special Session on Advanced Data Mining Techniques and Applications (ADMTA 2016)

Bay Vo	Ton Duc Thang University, Vietnam
Tzung-Pei Hong	National University of Kaohsiung, Taiwan
Bac Le	University of Science, VNU-HCM, Vietnam

10. Special Session on Modeling and Optimization Techniques in Information Systems, Database Systems, and Industrial Systems (MOT 2016)

Le Thi Hoai An	University of Lorraine, France
Pham Dinh Tao	National Institute for Applied Science – Rouen, France

11. Special Session on Computational Intelligence in Data Mining for Complex Problems (CIDMCP 2016)

Habiba Drias	University of Science and Technology USTHB Algiers,
	Algeria
Gabriella Pasi	University of Milano-Bicocca, Italy

12. Special Session on Smart Pattern Processing for Sports (SP2S 2016)

S.M.N. Arosha	Universiti Brunei Darussalam, Brunei
Senanayake	
Chu Kiong Loo	University of Malaya, Malaysia

International Program Committee

Ajith Abraham	Machine Intelligence Research Labs, USA
Muhammad Abulaish	Jamia Millia Islamia, India
El-Houssaine Aghezzaf	Ghent University, Belgium
Waseem Ahmad	International College of Auckland, New Zealand
Jesus Alcala-Fdez	University of Granada, Spain

Haider Alsabbagh Basra University, Iraq Ahmad Taher Azar Benha University, Egypt Le Hoai Bac University of Science, VNU-HCM, Vietnam University of Craiova, Romania Amelia Badica University of Craiova, Romania **Costin Badica** Bournemouth University, UK Emili Balaguer-Ballester Zbigniew Banaszak Warsaw University of Technology, Poland Dariusz Barbucha Gdynia Maritime University, Poland Bina Nusantara University, Indonesia John Batubara Gazi University, Turkey Ramazan Bayindir Maumita Bhattacharya Charles Sturt University, Australia Poznań University of Technology, Poland Jacek Błażewicz King Mongkut's Institute of Technology Ladkrabang, Veera Boonjing Thailand University of Silesia, Poland Mariusz Boryczka University of Silesia, Poland Urszula Boryczka Abdelhamid Bouchachia Bournemouth University, UK Zouhaier Brahmia University of Sfax, Tunisia National University of Singapore, Singapore Stephane Bressan Peter Brida University of Zilina, Slovakia University of Ljubljana, Slovenia Andrej Brodnik Grazyna Brzykcy Poznań University of Technology, Poland The Duy Bui University of Engineering and Technology, VNU Hanoi, Vietnam Robert Burduk Wrocław University of Technology, Poland Universidad Autonoma de Madrid, Spain David Camacho Frantisek Capkovic Institute of Informatics, Slovak Academy of Sciences, Slovakia Leopoldo Eduardo Tecnologico de Monterrey, Mexico Cardenas-Barron Oscar Castillo Tijuana Institute of Technology, Mexico Poznań School of Banking, Poland Dariusz Ceglarek Rituparna Chaki University of Calcutta, India Kit Yan Chan Curtin University, Australia Somchai University of Nagasaki, Japan Chatvichienchai Meng Chang Chen Academia Sinica, Taiwan Rung-Ching Chen Chaoyang University of Technology, Taiwan National Taiwan University of Science and Technology, Shyi-Ming Chen Taiwan Yi-Ping Phoebe Chen La Trobe University, Australia Yiu-Ming Cheung Hong Kong Baptist University, Hong Kong, SAR China King Mongkut's Institute of Technology Ladkrabang, Suphamit Chittayasothorn Thailand Tzu-Fu Chiu Aletheia University, Taiwan Yonsei University, Korea Sung-Bae Cho

Kazimierz Choroś	Wrocław University of Technology, Poland
Kun-Ta Chuang	National Cheng Kung University, Taiwan
Robert Cierniak	Czestochowa University of Technology, Poland
Dorian Cojocaru	University of Craiova, Romania
Phan Cong-Vinh	NTT University, Vietnam
Jose Alfredo Ferreira Costa	UFRN – Federal University of Rio Grande do Norte, Brazil
Keeley Crockett	Manchester Metropolitan University, UK
Bogusław Cyganek	AGH University of Science and Technology, Poland
Ireneusz Czarnowski	Gdynia Maritime University, Poland
Piotr Czekalski	Silesian University of Technology, Poland
Paul Davidsson	Malmo University, Sweden
Roberto De Virgilio	Università degli Studi Roma Tre, Italy
Phuc Do	Vietnam National University, HCMC, Vietnam
Tien V. Do	Budapest University of Technology and Economics, Hungary
Grzegorz Dobrowolski	AGH University of Science and Technology, Poland
Rafał Doroz	University of Silesia, Poland
Habiba Drias	University of Science and Technology Houari
Habiba Dilas	Boumediene, Algeria
El-Sayed M. El-Alfy	King Fahd University of Petroleum and Minerals, Saudi Arabia
Irraivan Elamvazuthi	Universiti Teknologi PETRONAS, Malaysia
Rim Faiz	University of Carthage, Tunisia
Victor Falea	Alexandru Ioan Cuza University of Iasi, Romania
Thomas Fober	University of Marburg, Germany
Simon Fong	University of Macau, Macau
Dariusz Frejlichowski	West Pomeranian University of Technology, Poland
Hamido Fujita	Iwate Prefectural University, Japan
Mohamed Gaber	Robert Gordon University, UK
Patrick Gallinari	LIP6 – University of Paris 6, France
Junbin Gao	Charles Sturt University, Australia
Dariusz Gąsior	Wrocław University of Technology, Poland
Janusz Getta	University of Wollongong, Australia
Dejan Gjorgjevikj	Ss. Cyril and Methodius University in Skopje, Macedonia
Daniela Godoy	ISISTAN Research Institute, Argentina
Gergo Gombos	Eotvos Lorand University, Hungary
Fernando Gomide	University of Campinas, Brazil
Antonio Gonzalez-Pardo	Bilbao Center for Applied Mathematics, Spain
Janis Grundspenkis	Riga Technical University, Latvia
Claudio Gutierrez	Universidad de Chile, Chile
Sung Ho Ha	Kyungpook National University, Korea
Sajjad Haider	Institute of Business Administration, Karachi, Pakistan
Marcin Hajdul	Institute of Logistics and Warehousing, Poland
Pei-Yi Hao	National Kaohsiung University of Applied Sciences,
	Taiwan

Harisno Bina Nusantara University, Indonesia Tutut Herawan University of Malaya, Malaysia Wrocław University of Economics, Poland Marcin Hernes Wrocław University of Technology, Poland Bogumiła Hnatkowska Hue University, Vietnam Huu Hanh Hoang Jaakko Hollmen Aalto University School of Science, Finland National University of Kaohsiung, Taiwan Tzung-Pei Hong National Kaohsiung University of Applied Sciences, Mong-Fong Horng Taiwan Tamkang University, Taiwan Chia-Ling Hsu Jen-Wei Huang National Cheng Kung University, Taiwan Wrocław University of Technology, Poland Maciej Huk Zbigniew Huzar Wrocław University of Technology, Poland Yeungnam University, Korea Dosam Hwang Universiti Teknologi Malaysia, Malaysia Roliana Ibrahim National Research University Higher School **Dmitry** Ignatov of Economics, Russia Democritus University of Thrace, Greece Lazaros Iliadis Athabasca University, Canada Hazra Imran Wrocław University of Technology, Poland Agnieszka Indyka-Piasecka Mirjana Ivanovic University of Novi Sad, Serbia Sanjay Jain National University of Singapore, Singapore Chuleerat Jaruskulchai Kasetsart University, Thailand Khalid Jebari LCS Rabat, Morocco Joanna Jędrzejowicz University of Gdańsk, Poland Piotr Jędrzejowicz Gdynia Maritime University, Poland Janusz Jeżewski Institute of Medical Technology and Equipment ITAM, Poland Geun-Sik Jo Inha University, Korea University of Ulsan, Korea Kang-Hyun Jo Jason J. Jung Chung-Ang University, Korea Janusz Kacprzyk Systems Research Institute, Polish Academy of Sciences, Poland Wrocław University of Technology, Poland Tomasz Kajdanowicz Nadjet Kamel Ferhat Abbas University of Setif, Algeria National Cheng Kung University, Taiwan Hung-Yu Kao Mehmet Hakan Karaata Kuwait University, Kuwait Auckland University of Technology, New Zealand Nikola Kasabov Poznań University of Economics, Poland Arkadiusz Kawa Muhammad Khurram King Saud University, Saudi Arabia Khan Pan-Koo Kim Chosun University, Korea Utah State University, USA Yong Seog Kim Eotvos Lorand University, Hungary Attila Kiss Silesian University of Technology, Poland Jerzy Klamka

Frank Klawonn Ostfalia University of Applied Sciences, Germany Goran Klepac Raiffeisen Bank, Croatia Joanna Kołodziej Cracow University of Technology, Poland Wrocław University of Technology, Poland Marek Kopel University of Zielona Góra, Poland Józef Korbicz Jacek Koronacki Institute of Computer Science, Polish Academy of Sciences. Poland Raymond Kosala Bina Nusantara University, Indonesia Leszek Koszałka Wrocław University of Technology, Poland University of Silesia, Poland Jan Kozak Adrianna Wrocław University of Technology, Poland Kozierkiewicz-Hetmańska Wrocław University of Technology, Poland Bartosz Krawczyk Ondrej Krejcar University of Hradec Kralove, Czech Republic Vilnius University, Lithuania Dalia Kriksciuniene Warsaw University of Technology, Poland Marzena Kryszkiewicz Concordia University, Canada Adam Krzyzak Elżbieta Kukla Wrocław University of Technology, Poland Marek Kulbacki Polish-Japanese Academy of Information Technology, Poland Marek Kurzyński Wrocław University of Technology, Poland Kazuhiro Kuwabara Ritsumeikan University, Japan Halina Kwaśnicka Wrocław University of Technology, Poland Ben-Gurion University of the Negev, Israel Mark Last Manchester Metropolitan University, UK Anabel Latham Hoai An Le Thi Université de Lorraine, France Chang-Hwan Lee DongGuk University, Korea Kun Chang Lee Sungkyunkwan University, Korea Yue-Shi Lee Ming Chuan University, Taiwan Philippe Lenca Telecom Bretagne, France National Central University, Taiwan Chunshien Li Jiuyong Li University of South Australia, Australia Rita Yi Man Li Hong Kong Shue Yan University, Hong Kong, SAR China **RWTH** Aachen University, Germany Horst Lichter University of Auckland, New Zealand Sebastian Link Nuevo Leon State University, Mexico Igor Litvinchev Lian Liu University of Kentucky, USA Tzu Chi University, Taiwan **Rey-Long** Liu Heitor Silverio Lopes UTFPR, Federal University of Technology, Parana, Brazil Edwin Lughofer Johannes Kepler University Linz, Austria Lech Madeyski Wrocław University of Technology, Poland Sharif University of Technology, Iran Nezam Mahdavi-Amiri Bernadetta Maleszka Wrocław University of Technology, Poland Wrocław University of Technology, Poland Marcin Maleszka Aristotle University of Thessaloniki, Greece Yannis Manolopoulos

Konstantinos Margaritis University of Macedonia, Greece Francesco Masulli University of Genoa, Italy Mustafa Mat Deris Universiti Tun Hussein Onn Malaysia, Malaysia Eotvos Lorand University, Hungary Tamas Matuszka University of Porto, Portugal Joao Mendes-Moreira Gerardo Mendez Instituto Tecnologico de Nuevo Leon, Mexico University College London, UK Hector D. Menendez Wrocław School of Banking, Poland Jacek Mercik Wrocław University of Technology, Poland Radosław Michalski University of Hradec Kralove, Czech Republic Peter Mikulecky Marek Miłosz Lublin University of Technology, Poland Kangwon National University, Korea Yang-Sae Moon IN2data Ltd Data Science Company, Croatia Leo Mrsic AGH University of Science and Technology, Poland Grzegorz J. Nalepa Mahyuddin Universitas Sumatera Utara, Indonesia K.M. Nasution Prospero Naval University of the Philippines, Philippines Queensland University of Technology, Australia Richi Nayak Fulufhelo Nelwamondo Council for Scientific and Industrial Research. South Africa Ho Chi Minh City University of Technology, Vietnam Dieu Ngoc Vo Huu-Tuan Nguyen Vietnam Maritime University, Vietnam Loan T.T. Nguyen Broadcasting College II, Vietnam Can Tho University, Vietnam Thai-Nghe Nguyen University of Melbourne, Australia Vinh Nguyen Toyoaki Nishida Kyoto University, Japan Yusuke Nojima Osaka Prefecture University, Japan Mariusz Nowostawski Norwegian University of Science and Technology, Norway Universidad Complutense de Madrid, Spain Alberto Nunez Universidad Complutense de Madrid, Spain Manuel Nunez Singapore Management University, Singapore Richard Jayadi Oentaryo Kouzou Ohara Aoyama Gakuin University, Japan University of Silesia, Poland Tomasz Orczyk Kanagawa Institute of Technology, Japan Shingo Otsuka Marcin Paprzycki Systems Research Institute, Polish Academy of Sciences, Poland Jakub Peksiński West Pomeranian University of Technology, Poland Danilo Pelusi University of Teramo, Italy Quang Binh University, Vietnam Xuan Hau Pham Tao Pham Dinh National Institute for Applied Sciences, France Vietnam National University, Hanoi, Vietnam Xuan-Hieu Phan Wrocław University of Technology, Poland Maciej Piasecki Dariusz Pierzchała Military University of Technology, Poland Wrocław University of Technology, Poland Marcin Pietranik University of Craiova, Romania Elvira Popescu

Piotr Porwik Bhanu Prasad Paulo Quaresma R. Rajesh Mohammad Rashedur Rahman Ewa Ratajczak-Ropel Patricia Riddle Sebastian A. Rios Miguel Angel Romero Orth Manuel Roveri Przemysław Różewski Leszek Rutkowski Alexander Ryjov Virgilijus Sakalauskas **Daniel Sanchez** Cesar Sanin Moamar Sayed-Mouchaweh Juergen Schmidhuber Bjorn Schuller Jakub Segen Ali Selamat S.M.N. Arosha Senanayake Natalya Shakhovska Alexei Sharpanskykh Andrzej Siemiński Guillermo R. Simari Dragan Simic Andrzej Skowron Adam Słowik Vladimir Sobeslav Kulwadee Somboonviwat Zenon A. Sosnowski Jerzy Stefanowski Serge Stinckwich Stanimir Stoyanov Suharjito Jerzy Świątek Paweł Świątek Andrzej Świerniak Edward Szczerbicki Julian Szymański

University of Silesia, Poland Florida A&M University, USA Universidade de Evora, Portugal Central University of Bihar, India North South University, Bangladesh

Gdynia Maritime University, Poland University of Auckland, New Zealand University of Chile, Chile Universidad de Chile, Chile

Politecnico di Milano, Italy West Pomeranian University of Technology, Poland Czestochowa University of Technology, Poland Lomonosov Moscow State University, Russia Vilnius University, Lithuania University of Granada, Spain University of Newcastle, Australia Ecole des Mines de Douai, France

Swiss AI Lab IDSIA, Switzerland University of Passau, Germany Gest3D, USA Universiti Teknologi Malaysia, Malaysia Universiti Brunei Darussalam, Brunei

Lviv Polytechnic National University, Ukraine Delft University of Technology, The Netherlands Wrocław University of Technology, Poland Universidad Nacional del Sur, Argentina University of Novi Sad, Serbia Warsaw University, Poland Koszalin University, Poland University of Technology, Poland University of Hradec Kralove, Czech Republic University of Electro-Communications, Japan

Białystok University of Technology, Poland Poznań University of Technology, Poland University of Caen-Lower Normandy, France University of Plovdiv Paisii Hilendarski, Bulgaria Bina Nusantara University, Indonesia Wrocław University of Technology, Poland Wrocław University of Technology, Poland Silesian University of Technology, Poland University of Newcastle, Australia Gdańsk University of Technology, Poland

Ryszard Tadeusiewicz AGH University of Science and Technology, Poland Yasufumi Takama Tokyo Metropolitan University, Japan Wrocław University of Technology, Poland **Zbigniew** Telec Silesian University of Technology, Poland Krzysztof Tokarz Cankava University, Turkey Behcet Ugur Torevin Bogdan Trawiński Wrocław University of Technology, Poland European Centre for Soft Computing, Spain Krzysztof Trawiński Hong-Linh Truong Vienna University of Technology, Austria Ualsher Tukeyev Al-Farabi Kazakh National University, Kazakhstan Olgierd Unold Wrocław University of Technology, Poland Pandian Vasant Universiti Teknologi PETRONAS, Malaysia Katholieke Universiteit Leuven, Belgium Joost Vennekens Technical University of Denmark, Denmark Jorgen Villadsen University of Piraeus, Greece Maria Virvou Bay Vo Ton Duc Thang University, Vietnam ERCIS Münster, Germany Gottfried Vossen King Saud University, Saudi Arabia M. Abdullah-Al Wadud CSIRO, Australia Can Wang Nanyang Technological University, Singapore Lipo Wang Yongkun Wang University of Tokyo, Japan Gdynia Maritime University, Poland Izabela Wierzbowska Konrad Wojciechowski Silesian University of Technology, Poland Wrocław University of Technology, Poland Michal Woźniak Krzysztof Wróbel University of Silesia, Poland Marian Wysocki Rzeszow University of Technology, Poland University of Technology Sydney, Australia Guandong Xu Xin-She Yang Middlesex University, UK University of Adelaide, Australia Lina Yao Shi-Jim Yen National Dong Hwa University, Taiwan Chinese Academy of Sciences, AMSS, China Lean Yu Systems Research Institute, Polish Academy of Sciences, Sławomir Zadrożny Poland University of Osijek, Croatia Drago Zagar Danuta Zakrzewska Łódź University of Technology, Poland Lucian Blaga University of Sibiu, Romania Constantin-Bala Zamfirescu Ss. Cyril and Methodius University in Skopje, Macedonia Katerina Zdravkova Vesna Zeljkovic Lincoln University, USA Wrocław University of Technology, Poland Aleksander Zgrzywa Zhongwei Zhang University of Southern Queensland, Australia Zhi-Hua Zhou Nanjing University, China Al-Farabi Kazakh National University, Kazakhstan Zhandos Zhumanov Wrocław University of Technology, Poland Maciej Zięba

Program Committees of Special Sessions

Multiple Model Approach to Machine Learning (MMAML 2016)

Emili Balaguer-Ballester Bournemouth University, UK Urszula Boryczka University of Silesia, Poland Abdelhamid Bouchachia Bournemouth University, UK Wrocław University of Technology, Poland Robert Burduk Tijuana Institute of Technology, Mexico Oscar Castillo Dariusz Ceglarek Poznań High School of Banking, Poland European Centre for Soft Computing, Spain Manuel Chica Rung-Ching Chen Chaoyang University of Technology, Taiwan King Mongkut's Institute of Technology Ladkrabang, Suphamit Chittayasothorn Thailand José Alfredo F. Costa Federal University (UFRN), Brazil Bogusław Cyganek AGH University of Science and Technology, Poland Ireneusz Czarnowski Gdynia Maritime University, Poland Patrick Gallinari Pierre et Marie Curie University, France Fernando Gomide State University of Campinas, Brazil National University of Kaohsiung, Taiwan Tzung-Pei Hong Roliana Ibrahim Universiti Teknologi Malaysia, Malaysia Wrocław University of Technology, Poland Konrad Jackowski Piotr Jedrzejowicz Gdynia Maritime University, Poland Wrocław University of Technology, Poland Tomasz Kajdanowicz Yong Seog Kim Utah State University, USA Bartosz Krawczyk Wrocław University of Technology, Poland Wrocław University of Technology, Poland Elżbieta Kukla Sungkyunkwan University, Korea Kun Chang Lee Johannes Kepler University Linz, Austria Edwin Lughofer University of Salamanca, Spain Hector Quintian Andrzej Sieminski Wrocław University of Technology, Poland Dragan Simic University of Novi Sad, Serbia Adam Słowik Koszalin University of Technology, Poland Kulwadee University of Electro-Communications, Japan Somboonviwat Zbigniew Telec Wrocław University of Technology, Poland Bogdan Trawiński Wrocław University of Technology, Poland Krzysztof Trawiński European Centre for Soft Computing, Spain Wrocław University of Technology, Poland Olgierd Unold Pandian Vasant University Technology Petronas, Malaysia Wrocław University of Technology, Poland

University of Southern Queensland, Australia

Nanjing University, China

Michał Woźniak Zhongwei Zhang Zhi-Hua Zhou

Workshop on Real-World Applications in Engineering and Technology (RWAET 2016)

· · · · · ·	
Vassili Kolokoltsov	University of Warwick, UK
Gerhard-Wilhelm Weber	METU, Turkey
Junzo Watada	Waseda University, Japan
Morteza Kalaji	Universiti Teknologi PETRONAS, Malaysia
Kwon-Hee Lee	Dong-A University, South Korea
Igor Litvinchev	Nuevo Leon State University, Mexico
Mohammad	King Saud University, Saudi Arabia
Abdullah-Al-Wadud	
Subhash Kamal	Universiti Teknologi PETRONAS, Malaysia
Vo Ngoc Dieu	HCMC University of Technology, Vietnam
Gerardo Maximiliano	Instituto Tecnologico de Nuevo Leon, Mexico
Mendez	
Leopoldo Eduardo	Tecnológico de Monterrey, Mexico
Cárdenas Barrón	
Hassan Soliemani	Universiti Teknologi PETRONAS, Malaysia
Denis Sidorov	Irkutsk State University, Russia
Weerakorn Ongsakul	Asian Institute of Technology, Thailand
Goran Klepac	Raiffeisen Bank Austria, Croatia
Jean Leveque	Universiti Teknologi PETRONAS, Malaysia
Herman Mawengkang	The University of Sumatera Utara, Indonesia
Igor Tyukhov	Moscow State University of Mechanical Engineering,
	Russia
Hayato Ohwada	Tokyo University of Science, Japan
Joga Setiawan	Universiti Teknologi PETRONAS, Malaysia
Ugo Fiore	Federico II University, Italy
Leo Mrsic	University College for Law and Finance Effectus Zagreb,
	Croatia
Nguyen Trung Thang	Ton Duc Thang University, Vietnam
Nikolai Voropai	Energy Systems Institute, Russia
Shiferaw Jufar	Universiti Teknologi PETRONAS, Malaysia
Xueguan Song	Dalian University of Technology, China
Ruhul A. Sarker	UNSW, Australia
Vipul Sharma	Lovely Professional University, India

Special Session on Intelligent Services for Smart Cities (IS4SC 2016)

Antonio Gonzalez	Basque Center for Applied Mathematics-TECNALIA,
	Spain
Jason J. Jung	Chung-Ang University, Korea
Pankoo Kim	Chosun University, Korea
Héctor D. Menéndez	University College London, UK
Xuan Hau Pham	Quang Binh University, Vietnam
Javier del Ser	Tecnalia, Spain

Special Session on Ontology-Based Software Development (OSD 2016)

Jose Maria Alvarez-Rodríguez	Universidad Carlos III de Madrid, Spain
Veera Boonjing	King Mongkut's Institute of Technology Ladkrabang, Bangkok Thailand
Somchai Chatvichienchai	University of Nagasaki, Japan
Rung-Ching Chen	Chaoyang University of Technology, Taiwan
Mustafa Mat Deris	Universiti Tun Hussein Onn, Malaysia
Iwona Dubielewicz	Wrocław University of Technology, Poland
Mirjana Ivanovic	University of Novi Sad, Serbia
Mark Last	Ben-Gurion University of the Negev, Israel
Adam Pease	R&D Manager at IPsoft, Hong Kong Polytechnic
	University, Hong Kong, SAR China
Sławomir Zadrożny	Systems Research Institute, Polish Academy of Sciences, Poland

Special Session on Intelligent Big Data Exploitation (IBDE 2016)

Ernesto DamianiUniversity of Milan, ItalyStuart DillonUniversity of Waikato, New Zealand	Alfredo Cuzzocrea	University of Trieste, Italy
Stuart Dillon University of Waikato, New Zealand	Ernesto Damiani	University of Milan, Italy
	Stuart Dillon	University of Waikato, New Zealand
Stefan Gruner University of Pretoria, South Africa	Stefan Gruner	University of Pretoria, South Africa
Birgit Hofreiter Technical University of Vienna, Austria	Birgit Hofreiter	Technical University of Vienna, Austria
Christopher Holland Manchester Business School, UK	Christopher Holland	Manchester Business School, UK
Alexander Löser Beuth University of Applied Sciences, Berlin, Germany	Alexander Löser	Beuth University of Applied Sciences, Berlin, Germany
Ute Masermann Decadis AG, Koblenz, Germany	Ute Masermann	Decadis AG, Koblenz, Germany
Tadeusz MorzyTechnical University of Poznań, Poland	Tadeusz Morzy	Technical University of Poznań, Poland
Florian Stahl ERCIS, University of Münster, Germany	Florian Stahl	ERCIS, University of Münster, Germany
Heike Trautmann ERCIS, University of Münster, Germany	Heike Trautmann	ERCIS, University of Münster, Germany
Gottfried Vossen ERCIS, University of Münster, Germany	Gottfried Vossen	ERCIS, University of Münster, Germany

Special Session on Intelligent and Context Systems (ICxS 2016)

Qiangfu Zhao	University of Aizu, Japan
Goutam Chakraborty	Iwate Prefectural University, Japan
Anita Sant'Anna	Halmstad University, Sweden
Michael Spratling	University of London, UK
Anna Fabijańska	Łódź University of Technology, Poland
Józef Korbicz	University of Zielona Góra, Poland
Jerzy Świątek	Wrocław University of Technology, Poland
Maciej Piasecki	Wrocław University of Technology, Poland
Michał Kędziora	Wrocław University of Technology, Poland
Nguyen Thanh Binh	Ho Chi Minh City University of Technology, Vietnam
Quan Thanh Tho	Ho Chi Minh City University of Technology, Vietnam
Ha Manh Tran	Ho Chi Minh City International University, Vietnam
Nguyen Khang Pham	Can Tho University, Vietnam

Nguyen Thai-Nghe Pedro Medeiros Jan Kwiatkowski Maciej Huk	Can Tho University, Vietnam University Nova of Lisbon, Portugal Wrocław University of Technology, Poland Wrocław University of Technology, Poland
Emilio Luque	University Autonoma of Barcelona, Spain
Dolores Rexachs	University Autonoma of Barcelona, Spain
Philip Moore	Lanzhou University, China
Norbert Jankowski	Nicholas Copernicus University, Poland
Bartlett W. Mel	University of Southern California, USA
Gregory Hager	Johns Hopkins University, USA
Shimon Ullman	Weizmann Institute of Science, Israel
Santosh S. Venkatesh	University of Pennsylvania, USA
Garrison W. Cottrell	University of California, USA
Xiao-Ping Zhang	Ryerson University, Canada
Grażyna Suchacka	Opole University, Poland
Ryszard Tadeusiewicz	AGH, Poland
William Dally	Stanford University, UK
Marek Wróblewski	University of Stuttgart, Germany
Wen Gao	Peking University, China
Elan Barenholtz	Florida Atlantic University, USA

Special Session on Analysis of Image, Video, and Motion Data in Life Sciences (IVMLS 2016)

Artur Bąk	Polish–Japanese Academy of Information Technology, Poland
Leszek Chmielewski	Warsaw University of Life Sciences, Poland
Aldona Barbara Drabik	Polish–Japanese Academy of Information Technology, Poland
Marcin Fojcik	Sogn og Fjordane University College, Norway
Adam Gudyś	Silesian University of Technology, Poland
Celina Imielińska	Vesalius Technologies LLC, USA
Henryk Josiński	Silesian University of Technology, Poland
Ryszard Klempous	Wrocław University of Technology, Poland
Ryszard Kozera	The University of Life Sciences – SGGW, Poland
Julita Kulbacka	Wrocław Medical University, Poland
Marek Kulbacki	Polish–Japanese Academy of Information Technology, Poland
Aleksander Nawrat	Silesian University of Technology, Poland
Jerzy Paweł Nowacki	Polish–Japanese Academy of Information Technology, Poland
Eric Petajan	LiveClips LLC, USA
Andrzej Polański	Silesian University of Technology, Poland
Joanna Rossowska	Polish Academy of Sciences, Institute of Immunology and Experimental Therapy, Poland
Jakub Segen	Gest3D LLC, USA

Aleksander Sieroń	Medical University of Silesia, Poland
Michał Staniszewski	Polish-Japanese Academy of Information Technology,
	Poland
Adam Świtoński	Silesian University of Technology, Poland
Agnieszka Szczęsna	Silesian University of Technology, Poland
Kamil Wereszczyński	Polish–Japanese Academy of Information Technology, Poland
Konrad Wojciechowski	Polish–Japanese Academy of Information Technology, Poland
Sławomir	Polish-Japanese Academy of Information Technology,
Wojciechowski	Poland

Special Session on Collective Intelligence for Service Innovation, Technology Opportunity, E-Learning, and Fuzzy Intelligent Systems (CISTEF 2016)

Chang, Ya-Fung	Tamkang University, Taiwan
Chen, Chi-Min	Aletheia University, Taiwan
Chiu, Chih-Chung	Aletheia University, Taiwan
Chiu, Kuan-Shiu	Aletheia University, Taiwan
Chiu, Tzu-Fu	Aletheia University, Taiwan
Chou, Chen-Huei	College of Charleston, USA
Hsu, Chia-Ling	Tamkang University, Taiwan
Hsu, Fang-Cheng	Aletheia University, Taiwan
Lin, Kuo-Sui	Aletheia University, Taiwan
Lin, Min-Huei	Aletheia University, Taiwan
Lin, Yuh-Chang	Aletheia University, Taiwan
Maeno, Yoshiharu	NEC Corporation, Japan
Sun, Pen-Choug	Aletheia University, Taiwan
Wang, Henry	Chinese Academy of Sciences, China
Wang, Leuo-Hong	Aletheia University, Taiwan
Yang, Feng-Sueng	Aletheia University, Taiwan
Yang, Hsiao-Fang	National Chengchi University, Taiwan
Yang, Ming-Chien	Aletheia University, Taiwan

Special Session on Advanced Data Mining Techniques and Applications (ADMTA 2016)

Bay Vo	Ton Duc Thang University, Vietnam
Tzung-Pei Hong	National University of Kaohsiung, Taiwan
Bac Le	University of Science, VNU-HCM, Vietnam
Chun-Hao Chen	Tamkang University, Taiwan
Chun-Wei Lin	Harbin Institute of Technology Shenzhen Graduate School,
	China
Wen-Yang Lin	National University of Kaohsiung, Taiwan
Yeong-Chyi Lee	Cheng Shiu University, Taiwan
Le Hoang Son	University of Science, Ha Noi, Vietnam
Le Hoang Thai	University of Science, Ho Chi Minh City, Vietnam

Vo Thi Ngoc Chau	Ho Chi Minh City University of Technology, Ho Chi Minh
	City, Vietnam
Van Vo	Ho Chi Minh University of Industry, Ho Chi Minh City,
	Vietnam

Special Session on Modeling and Optimization Techniques in Information Systems, Database Systems, and Industrial Systems (MOT 2016)

Le Thi Hoai An Pham Dinh Tao	University of Lorraine, France INSA-Rouen, France
Pham Duc Truong	University of Cardiff, UK
El-Houssaine Aghezzaf	University of Gent, Belgium
Azeddine Beghadi	University of Paris 13, France
Raymond Bisdorff	Université du Luxembourg
Jin-Kao Hao	University of Angers, France
Van-Dat Cung	INPG, France
Joaquim Judice	University Coimbra, Portugal
Amédéo Napoli	LORIA, France
Yann Germeur	LORIA, France
Conan-Guez Brieu	University of Lorraine, France
Gely Alain	University of Lorraine, France
Le Hoai Minh	University of Luxembourg, Luxembourg
Vo Xuan Thanh	University of Lorraine, France
Do Thanh Nghi	Can Tho University, Vietnam
Ibrahima Sakho	University of Lorraine, France

Special Session on Computational Intelligence in Data Mining for Complex Problems (CIDMCP 2016)

University of Minnesota, USA
University of Minnesota, USA
University of Lorraine, France
University of Sétif, Algeria
University of Louisville, USA
Indian Institute of Technology Delhi, India
USTHB, Algeria
KAIST, Korea
University of Colorado at Boulder, USA
Polytechnic of Porto, Portugal
University of Michigan, USA
Liverpool John Moores University, UK
University of Salford, UK
Vienna University, Austria
Nantes University, France
KAIST, Korea
University of KwaZulu-Natal, South Africa
APUTI, Malaysia

Jae Jeung Rho	KAIST, Korea
Houari Sahraoui	University of Montreal, Canada
Lakhdar Sais	University of Artois, France
Thouraya Tebibel	ESI, Algeria
Farouk Yalaoui	Troyes University of Technology, France
Ning Zhong Maebashi	Institute of Technology, Japan

Special Session on Smart Pattern Processing for Sports (SP2S 2016)

Minoru Sasaki	Gifu University, Japan
Michael Yu Wang	National University of Singapore, Singapore
Eran Edirisinghe	Loughborough University, UK
Ajith Abraham	MIR Labs, USA
James F. Peters	University of Manitoba, Canada
Sergio Velastin	Kingston University, UK
Tadashi Ishihara	Fukushima University, Japan
Darwin Gouwanda	Monash University, Malaysia
Aaron Leung	The Hong Kong Polytechnic University, Hong Kong,
	SAR China
Toshiyo Tamura	Osaka Electro-Communication University, Japan
T. Nandha Kumaar	University of Nottingham, Malaysia
James Goh Cho Hong	National University Singapore, Singapore
Tsuyoshi Takagi	Kyushu University, Japan
William C. Rose	University of Delaware, USA

Contents – Part II

Intelligent Big Data Exploitation

Redhyte: Towards a Self-diagnosing, Self-correcting, and Helpful Analytic	
Platform	3
Wei Zhong Toh, Kwok Pui Choi, and Limsoon Wong	
Learning to Filter User Explicit Intents in Online Vietnamese Social Media	
Texts	13
Thai-Le Luong, Thi-Hanh Tran, Quoc-Tuan Truong,	
Thi-Minh-Ngoc Truong, Thi-Thu Phi, and Xuan-Hieu Phan	
Retrieving Rising Stars in Focused Community Question-Answering	25
Long T. Le and Chirag Shah	
Cloud and Network Computing	
Cloud and Activork Computing	
Fuzzy Inference System for Mobility Prediction to Control HELLO	

Fuzzy interence System for Mobility Prediction to Control HELLO	
Broadcasting in MANET	39
Tran The Son, Hoang Bao Hung, Vo Duy Thanh, Nguyen Vu,	
and Hoa Le-Minh	
Resource Allocation for Virtual Service Based on Heterogeneous Shared	
Hosting Platforms	51
Nguyen Minh Nhut Pham, Thu Huong Nguyen, and Van Son Le	
Design and Implementation of Data Synchronization and Offline	
Capabilities in Native Mobile Apps	61
Kamoliddin Mavlonov, Tsutomu Inamoto, Yoshinobu Higami,	
and Shin-Ya Kobayashi	

Multiple Model Approach to Machine Learning

A Machine Learning Based Technique for Detecting Digital Image	
Resampling	75
Hieu Cuong Nguyen	
Empirical Study of Social Collaborative Filtering Algorithm	85
Firas Ben Kharrat, Aymen Elkhlifi, and Rim Faiz	

Cooperation Prediction in GitHub Developers Network with Restricted Boltzmann Machine	96
Fast and Accurate - Improving Lexicon-Based Sentiment Classificationwith an Ensemble MethodsLukasz Augustyniak, Piotr Szymański, Tomasz Kajdanowicz,and Przemysław Kazienko	108
Adaptive Ant Clustering Algorithm with Pheromone	117
Link Prediction in a Semi-bipartite Network for Recommendation Aastha Nigam and Nitesh V. Chawla	127
Hybrid One-Class Ensemble for High-Dimensional Data Classification Bartosz Krawczyk	136
Advanced Data Mining Techniques and Applications	
A Lossless Representation for Association Rules Satisfying Multiple Evaluation Criteria	147
Learning Algorithms Aimed at Collinear Patterns	159
Fast Human Activity Recognition Based on a Massively Parallel Implementation of Random Forest	169
An Item-Based Music Recommender System Using Music Content Similarity	179
Efficient Mining of Fuzzy Frequent Itemsets with Type-2 Membership Functions	191
Improving the Performance of Collaborative Filtering with Category-Specific Neighborhood	201

Mining Drift of Fuzzy Membership Functions	211
Tzung-Pei Hong, Min-Thai Wu, Yan-Kang Li, and Chun-Hao Chen	

Mining Discriminative High Utility Patterns	219
An Experimental Study on Cholera Modeling in Hanoi	230
On Velocity-Preserving Trajectory Simplification	241
Computational Intelligence in Data Mining for Complex Problems	
Sink Toward Source Algorithm Finding Maximal Flows on Extended	050
Mixed Networks	253
An Efficient Algorithm for a New Constrained LCS Problem	261
A New Betweenness Centrality Algorithm with Local Search for Community Detection in Complex Network <i>Youcef Belkhiri, Nadjet Kamel, and Habiba Drias</i>	268
Meta-Apriori: A New Algorithm for Frequent Pattern Detection Neyla Cherifa Benhamouda, Habiba Drias, and Célia Hirèche	277
Solving a Malleable Jobs Scheduling Problem to Minimize Total Weighted Completion Times by Mixed Integer Linear Programming Models <i>Nhan-Quy Nguyen, Farouk Yalaoui, Lionel Amodeo, Hicham Chehade,</i> <i>and Pascal Toggenburger</i>	286
Theoretical Analysis of Workload Imbalance Minimization Problem on Identical Parallel Machines Yassine Ouazene, Farouk Yalaoui, Alice Yalaoui, and Hicham Chehade	296
Collective Intelligence for Service Innovation, Technology Opportunity, E-Learning and Fuzzy Intelligent Systems	
A New Cosine Similarity Matching Model for Interior Design Drawing Case Reasoning	307
The Framework of Discovery Early Adopters' Incipient Innovative Ideas Chao-Fu Hong, Mu-Hua Lin, and Woo-Tsong Lin	319

Collaborative Learning in Teacher Education Community for Pre-service Teacher Practice Learning	328
Chia-Ling Hsu, Yi-Fang Chang, Chien-Han Chen, and Huey-Fang Ju	
Mobile-Assisted Model of Teaching and Learning English for IT Students Ivana Simonova and Petra Poulova	336
IPO and Financial News Jia-Lang Seng, Pi-Hua Yang, and Hsiao-Fang Yang	346
An Evaluation of the Conversation Agent System	354
Simulation of Each Type of Defibrillation Impulses by Using LabVIEW Lukas Peter and Radek Osmancik	366
Analysis of Image, Video and Motion Data in Life Sciences	
Building the Facial Expressions Recognition System Based on RGB-D Images in High Performance <i>Trung Truong and Ngoc Ly</i>	377
Zero-Velocity Detectors for Orientation Estimation Problem Agnieszka Szczesna, Przemysław Pruszowski, Andrzej Polański, Damian Peszor, and Konrad Wojciechowski	388
Analysis of Human Motion Data Using Recurrence Plots and Recurrence Quantification Measures	397
Henryk Josiński, Agnieszka Michalczuk, Romualda Mucha, Adam Świtoński, Agnieszka Szczęsna, and Konrad Wojciechowski	591
Cellular Nuclei Differentiation Evaluated by Automated Analysis of CLSM	407
Images Julita Kulbacka, Marek Kulbacki, Jakub Segen, Grzegorz Chodaczek, Magda Dubinska-Magiera, and Jolanta Saczko	407
Selected Space-Time Based Methods for Action Recognition Sławomir Wojciechowski, Marek Kulbacki, Jakub Segen, Rafał Wyciślok, Artur Bąk, Kamil Wereszczyński, and Konrad Wojciechowski	417
Recent Developments in Tracking Objects in a Video Sequence	427

Recent Developments on 2D Pose Estimation From Monocular Images Artur Bąk, Marek Kulbacki, Jakub Segen, Dawid Świątkowski, and Kamil Wereszczyński	437
Video Editor for Annotating Human Actions and Object Trajectories Marek Kulbacki, Kamil Wereszczyński, Jakub Segen, Michał Sachajko, and Artur Bąk	447
Learning Articulated Models of Joint Anatomy from Utrasound Images Jakub Segen, Kamil Wereszczyński, Marek Kulbacki, Artur Bąk, and Marzena Wojciechowska	458
Facial Reconstruction on the Basis of Video Surveillance System for the Purpose of Suspect Identification Damian Pęszor, Michał Staniszewski, and Marzena Wojciechowska	467
Efficient Motion Magnification Mariusz Domżał, Dawid Sobel, Jan Kwiatkowski, Karol Jędrasiak, and Aleksander Nawrat	477
Real Time Thermogram Enhancement by FPGA-Based Contrast Stretching Jan Kwiatkowski, Krzysztof Daniec, Karol Jędrasiak, Dawid Sobel, Mariusz Domżał, and Aleksander Nawrat	487
Real World Applications in Engineering and Technology	
Dijkstra-Based Selection for Parallel Multi-lanes Map-Matching and an Actual Path Tagging System	499
PBX Autoresponder System for Information Lookup of Pupil Records Nguyen Hong Quang, Trinh Van Loan, and Bui Duy Chien	509
Possibilities for Development and Use of 3D Applications on the Android Platform	519
Ontology-Based Software Development	

Ensuring the Correctness of Business Workflows at the Syntactic Level:	
An Ontological Approach	533
Thi-Hoa-Hue Nguyen and Nhan Le-Thanh	

Semantic Integration via Enterprise Service Bus in Virtual Organization Breeding Environments <i>Wilcilene Maria Kowal Schratzenstaller, Fabiano Baldo,</i> <i>and Ricardo José Rabelo</i>	544
Conceptual Modeling Using Knowledge of Domain Ontology Hnatkowska Bogumiła, Huzar Zbigniew, Tuzinkiewicz Lech, and Dubielewicz Iwona	554
Intelligent and Context Systems	
Using Context-Aware Environment for Elderly Abuse Prevention	567
Post-search Ambiguous Query Classification Method Based on Contextual and Temporal Information	575
A Context-Aware Implicit Feedback Approach for Online Shopping Recommender Systems <i>Luu Nguyen Anh-Thu, Huu-Hoa Nguyen, and Nguyen Thai-Nghe</i>	584
Improving Efficiency of Sentence Boundary Detection by Feature Selection <i>Thi-Nga Ho, Tze Yuang Chong, Van Hai Do, Van Tung Pham,</i> <i>and Eng Siong Chng</i>	594
Modelling and Optimization Techniques in Information Systems, Database Systems and Industrial Systems	
Pointing Error Effects on Performance of Amplify-and-Forward Relaying MIMO/FSO Systems Using SC-QAM Signals Over Log-Normal Atmospheric Turbulence Channels	607
Portfolio Optimization by Means of a χ-Armed Bandit Algorithm Mahdi Moeini, Oliver Wendt, and Linus Krumrey	620
MSDN-TE: Multipath Based Traffic Engineering for SDN Khoa Truong Dinh, Sławomir Kukliński, Wiktor Kujawa, and Michał Ulaski	630
DC Programming and DCA for Enhancing Physical Layer Security via Relay Beamforming Strategies <i>Tran Thi Thuy, Nguyen Nhu Tuan, Le Thi Hoai An, and Alain Gély</i>	640

Bees and Pollens with Communication Strategy for Optimization <i>Tien-Szu Pan, Thi-Kien Dao, Trong-The Nguyen, Shu-Chuan Chu,</i> <i>and Jeng-Shyang Pan</i>	651
Online DC Optimization for Online Binary Linear Classification Ho Vinh Thanh, Le Thi Hoai An, and Bui Dinh Chien	661
Robust Optimization for Clustering	671
Using Valid Inequalities and Different Grids in LP-Based Heuristic for Packing Circular Objects Igor Litvinchev, Luis Infante, and Edith Lucero Ozuna Espinosa	681
Optimisation of Query Processing with Multilevel Storage	691

Smart Pattern Processing for Sports

A Real-Time Intelligent Biofeedback Gait Patterns Analysis System for Knee Injured Subjects	703
Pattern Recognition of Brunei Soldier's Based on 3-Dimensional Kinematics and Spatio-Temporal Parameters	713
An Integrated Pattern Recognition System for Knee Flexion Analysis Joko Triloka, S.M.N. Arosha Senanayake, and Daphne Lai	723
An EMG Knowledge-Based System for Leg Strength Classification and Vertical Jump Height Estimation of Female Netball Players	733
Intelligent Services for Smart Cities	
Approach to Priority-Based Controlling Traffic Lights	745
ALPR - Extension to Traditional Plate Recognition Methods	755

and Konrad Wojciechowski

A New Method for Calibrating Gazis-Herman-Rothery Car-Following Model	765
Control of Smart Environments Using Brain Computer Interface Based on Genetic Algorithm	773
Comparison of Floor Detection Approaches for Suburban Area	782
Author Index	793

Contents – Part I

Knowledge Engineering and Semantic Web

A Novel Approach to Multimedia Ontology Engineering for Automated Reasoning over Audiovisual LOD Datasets	3
Finding Similar Clothes Based on Semantic Description for the Purpose of Fashion Recommender System Dariusz Frejlichowski, Piotr Czapiewski, and Radosław Hofman	13
An Influence Analysis of the Inconsistency Degree on the Quality of Collective Knowledge for Objective Case	23
Knowledge Base Refinement with Gamified Crowdsourcing Daiki Kurita, Boonsita Roengsamut, Kazuhiro Kuwabara, and Hung-Hsuan Huang	33
Argumentation Framework for Merging Stratified Belief Bases Trong Hieu Tran, Thi Hong Khanh Nguyen, Quang Thuy Ha, and Ngoc Trinh Vu	43
An Ontology-Based Knowledge Representation of MCDA Methods Jarosław Wątróbski and Jarosław Jankowski	54
Preliminary Evaluation of Multilevel Ontology Integration on the Concept Level	65
Temporal Ontology Representation and Reasoning Using Ordinals and Sets for Historical Events	75
Measuring Propagation Phenomena in Social Networks: Promising Directions and Open Issues Dariusz Król	86

Social Networks and Recommender Systems

Visualizing Learning Activities in Social Network.	97
Thi Hoang Yen Ho, Thanh Tam Nguyen, and Insu Song	

A Mobility Prediction Model for Location-based Social Networks Nguyen Thanh Hai, Huu-Hoa Nguyen, and Nguyen Thai-Nghe	106
Empirical Analysis of the Relationship Between Trust and Ratings in Recommender Systems	116
Text Processing and Information Retrieval	
Integrated Feature Selection Methods Using Metaheuristic Algorithms for Sentiment Analysis	129
Big Data in Contemporary Linguistic Research. In Search of Optimum Methods for Language Chronologization <i>Piotr Wierzchoń</i>	141
Improving Twitter Aspect-Based Sentiment Analysis Using Hybrid Approach Nurulhuda Zainuddin, Ali Selamat, and Roliana Ibrahim	151
Design of a Yoruba Language Speech Corpus for the Purposes of Text-to-Speech (TTS) Synthesis	161
Named Entity Recognition for Vietnamese Spoken Texts and Its Application in Smart Mobile Voice Interaction	170
Explorations of Prosody in Vietnamese Language	181
Identifying User Intents in Vietnamese Spoken Language Commands and Its Application in Smart Mobile Voice Interaction <i>Thi-Lan Ngo, Van-Hop Nguyen, Thi-Hai-Yen Vuong,</i> <i>Thac-Thong Nguyen, Thi-Thua Nguyen, Bao-Son Pham,</i> <i>and Xuan-Hieu Phan</i>	190
A Method for Determining Representative of Ontology-based User Profile in Personalized Document Retrieval Systems	202

Database Systems and Software Engineering

Data Quality Scores for Pricing on Data Marketplaces	215		
Extraction of Structural Business Rules from C# Bogumila Hnatkowska and Marcin Ważeliński	225		
Higher Order Mutation Testing to Drive Development of New Test Cases: An Empirical Comparison of Three Strategies	235		
On the Relationship Between the Order of Mutation Testing and the Properties of Generated Higher Order Mutants	245		
Intelligent Information Systems			
Responsive Web Design: Testing Usability of Mobile Web Applications Jarosław Bernacki, Ida Błażejczyk, Agnieszka Indyka-Piasecka, Marek Kopel, Elżbieta Kukla, and Bogdan Trawiński	257		
Person Name Disambiguation for Building University Knowledge Base Piotr Andruszkiewicz and Szymon Szepietowski	270		
Improving Behavior Prediction Accuracy by Using Machine Learning for Agent-Based Simulation	280		
A Model for Analysis and Design of Information Systems Based on a Document Centric Approach	290		
MobiCough: Real-Time Cough Detection and Monitoring Using Low-Cost Mobile Devices	300		
Database of Peptides Susceptible to Aggregation as a Tool for Studying Mechanisms of Diseases of Civilization	310		
Using a Cloud Computing Telemetry Service to Assess PaaS Setups Francisco Anderson Freire Pereira, Jackson Soares, Adrianne Paula Vieira Andrade, Gilson Gomes Silva, and João Paulo Souza Medeiros	320		
Towards the Tradeoff Between Online Marketing Resources Exploitation and the User Experience with the Use of Eye Tracking Jarosław Jankowski, Paweł Ziemba, Jarosław Wątróbski, and Przemysław Kazienko			
--	-----	--	--
Using Cognitive Agents for Unstructured Knowledge Management in a Business Organization's Integrated Information System	344		
A Norm Assimilation Approach for Multi-agent Systems in Heterogeneous Communities	354		
Knowledge in Asynchronous Social Group Communication	364		
Decision Support and Control Systems			
Interpreted Petri Nets in DES Control Synthesis	377		
Enhanced Guided Ejection Search for the Pickup and Delivery Problem with Time Windows	388		
How to Generate Benchmarks for Rich Routing Problems? Marcin Cwiek, Jakub Nalepa, and Marcin Dublanski	399		
Formal a Priori Power Analysis of Elements of a Communication Graph Jacek Mercik	410		
Angiogenic Switch - Mixed Spatial Evolutionary Game Approach Michal Krzeslak, Damian Borys, and Andrzej Swierniak	420		
Model Kidney Function in Stabilizing of Blood Pressure	430		
Dynamic Diversity Population Based Flower Pollination Algorithm for Multimodal Optimization	440		
Hardware Implementation of Fuzzy Petri Nets with Lukasiewicz Norms for Modelling of Control Systems	449		

ALMM Solver for Combinatorial and Discrete Optimization Problems – Idea of Problem Model Library <i>Ewa Dudek-Dyduch and Sławomir Korzonek</i>	459
Integration of Collective Knowledge in Financial Decision Support System Marcin Hernes and Andrzej Bytniewski	470
Framework for Product Innovation Using SOEKS and Decisional DNA Mohammad Maqbool Waris, Cesar Sanin, and Edward Szczerbicki	480
Common-Knowledge and KP-Model <i>Takashi Matsuhisa</i>	490
Controllability of Semilinear Fractional Discrete Systems	500

Machine Learning and Data Mining

On Fast Randomly Generation of Population of Minimal Phase and Stable Biquad Sections for Evolutionary Digital Filters Design Methods	511
Recursive Ensemble Land Cover Classification with Little Training Data and Many Classes	521
Treap Mining – A Comparison with Traditional Algorithm	532
SVM Based Lung Cancer Prediction Using microRNA Expression Profiling from NGS Data Salim A., Amjesh R., and Vinod Chandra S.S.	544
Forecasting the Magnitude of Dengue in Southern Vietnam	554
Self-paced Learning for Imbalanced Data Maciej Zięba, Jakub M. Tomczak, and Jerzy Świątek	564
A New Similarity Measure for Intuitionistic Fuzzy Sets	574
Multiple Kernel Based Collaborative Fuzzy Clustering Algorithm	585

Credit Risk Evaluation Using Cycle Reservoir Neural Networks with Support Vector Machines Readout	595
Fuzzy-Based Feature and Instance Recovery	605
An Enhanced Support Vector Machine for Faster Time Series Classification Thapanan Janyalikit, Phongsakorn Sathianwiriyakhun, Haemwaan Sivaraks, and Chotirat Ann Ratanamahatana	616
Parallel Implementations of the Ant Colony Optimization Metaheuristic Andrzej Siemiński	626
A Segmented Artificial Bee Colony Algorithm Based on Synchronous Learning Factors	636
A Method for Query Top-K Rules from Class Association Rule Set Loan T.T. Nguyen, Hai T. Nguyen, Bay Vo, and Ngoc-Thanh Nguyen	644
Hierarchy of Groups Evaluation Using Different F-Score Variants	654
Hierarchical Evolutionary Multi-biclustering: Hierarchical Structures of Biclusters Generation Anna Maria Filipiak and Halina Kwasnicka	665
Computer Vision Techniques	
Feature Selection Based on Synchronization Analysis for Multiple fMRI Data	679
Exploiting GPU for Large Scale Fingerprint Identification	688
Extraction of Myocardial Fibrosis Using Iterative Active Shape Method Jan Kubicek, Iveta Bryjova, Marek Penhaker, Michal Kodaj, and Martin Augustynek	698
Increasing the Efficiency of GPU-Based HOG Algorithms Through	709
Tile-Images Images Darius Malysiak and Markus Markard	708

Gradient Depth Map Based Ground Plane Detection for Mobile Robot Applications	721
Dang Khanh Hoa, Pham The Cuong, and Nguyen Tien Dzung	, = 1
Multiscale Car Detection Using Oriented Gradient Feature and Boosting Machine	731
Probabilistic Approach to Content-Based Indexing and Categorization of Temporally Aggregated Shots in News Videos	741
A Method of Data Registration for 3D Point Clouds Combining with Motion Capture Technologies Shicheng Zhang, Dongsheng Zhou, and Qiang Zhang	751
Detection and Recognition of Speed Limit Sign from Video Lei Zhu, Chun-Sheng Yang, and Jeng-Shyang Pan	760
FARTHEST: FormAl distRibuTed scHema to dEtect Suspicious arTefacts Pablo C. Cañizares, Mercedes G. Merayo, and Alberto Núñez	770
A Fast and Robust Image Watermarking Scheme Using Improved Singular Value Decomposition	780
Accelerative Object Classification Using Cascade Structure for Vision Based Security Monitoring Systems	790
Selections of Suitable UAV Imagery's Configurations for Regions Classification	801
Author Index	811

A New Method for Calibrating Gazis-Herman-Rothery Car-Following Model

Fergyanto E. Gunawan $^{(\boxtimes)},$ Elysia Elysia, Benfano Soewito, and Bahtiar S. Abbas

Binus Graduate Programs, Bina Nusantara University, Jakarta 11480, Indonesia fgunawan@binus.edu, f.e.gunawan@gmail.com

Abstract. Traffic simulation at the microscopic level utilizes carfollowing model to describe vehicle interactions on a vehicular lane. The most widely used car-following model is the Gazis-Herman-Rothery model, which contains two coefficients: m and l. The coefficients should be determined in calibration tests where the involved vehicles are tracked for their positions, velocities, and accelerations. The existing calibration methods are costly. This study proposes a calibration method using computer vision. Two computer vision algorithms are evaluated, namely, multilayer and Eigen background subtraction. The vehicle movement is tracked on a perspective plane and then is projected to an orthogonal plane. From the verification tests, we determine that the multilayer algorithm has 96.6% accuracy for the vehicle position and 88.9% for the velocity. The Eigen algorithm has 92.9% accuracy for the vehicle position and 84.3% for the velocity. The estimated model coefficients is 0.4 for m and 1.2 for l. These values are within the range of the most reliable coefficients according to many literatures.

Keywords: Car-following model \cdot Vehicle tracking \cdot Computer vision \cdot Micro-simulation

1 Introduction

Traffic congestion is a huge issue faced by many cities including Jakarta, the capital of Republic of Indonesia [1]. Morichi [2] recommends a number of long-term strategic development to overcome the problem including development of well-structure public transportation systems and decentralized urban form. In 2003, Bus-Rapid-Transit-based public transportation system was initiated in Jakarta [3] and the operational efficiency of the system has been the topics of a number of research works [4–6].

Traffic congestion can also be reduced by traffic management. To yield good traffic management, traffic microsimulation is an indispensable tool. Micro simulation shows the movement of every vehicle that is traced through a road network over time at a small time increment of a fraction of a second [7].

Car-following model is at the heart of the traffic microsimulation. The model governs the vehicle movement along a vehicle lane. Essentially, the model is a © Springer-Verlag Berlin Heidelberg 2016

N.T. Nguyen et al. (Eds.): ACIIDS 2016, Part II, LNAI 9622, pp. 765–772, 2016. DOI: 10.1007/978-3-662-49390-8_74

mathematical description of the stimulus and response interaction [8]. One of the widely used car-following models is Gazis-Herman-Rothery (GHR) model, which has the following mathematical form [9]:

$$a_n(t) = \alpha \frac{v_n^m(t) \cdot \Delta v_n(t - t_d)}{\Delta x_n^l(t - t_d)},\tag{1}$$

where $a_n(t)$ is the vehicle acceleration, $v_n(t)$ is the vehicle velocity, Δv_n and Δx , respectively, are the relative velocity and the relative position with respect to the leading vehicle. The model has three parameters α , m, and l, and has a delay of t_d . The driver delay or response time t_d is usually about 1 s; α is the driver sensitivity [9].

The central issue to use the micro-simulation model is finding the model parameters for each type of vehicles, road types, traffic conditions, and environment. The parameters are usually determined via a calibration process. There are few existing calibration methods and they are expensive [10-13].

This study intends to establish a significantly low-cost calibration procedure where the vehicle movements will be recorded digitally, tracked with a computer vision technique, and projected with an orthography projection technique.

2 Research Methods

The current proposal is only suitable for vehicle moving along a straight lane. The lane should be marked at four corners. The vehicle position is obtained with the following procedure.

Firstly, a camera is positioned at an elevation and angle from the lane to capture the vehicle movement in the perspective view. The camera is used to produce images of the vehicle movement. Secondly, computer vision is used to obtain the vehicle position in the images [14]. Two algorithms are evaluated in this study: multilayer background subtraction [15] and Eigen background subtraction [16]. Thirdly, the vehicle position is projected from the perspective view to an orthographic view using an orthorectification projection.

The following transformation is used to map the data from the perspective plane to the road/orthographic plane [17]. We consider a unit square S_1 and an arbitrary quadrilateral Q, which is governed by four corner points: $\mathbf{x}'_1, \mathbf{x}'_2, \mathbf{x}'_3$, and \mathbf{x}'_4 . These four points have one-to-one relations with those four points in the unit square, see Fig. 1. The following matrix \mathbf{T} projects any point on the unit square to a point on the quadrilateral, or mathematically: $S_1 \xrightarrow{\mathbf{T}} Q$, where the transformation \mathbf{T} is

$$\mathbf{T} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix},$$
(2)

Fig. 1. Projective mapping from the unit square S_1 to an arbitrary quadrilateral Q [17].

where

$$a_{31} = \frac{(x_1' - x_2' + x_3' - x_4')(y_4' - y_3') - (y_1' - y_2' + y_3' - y_4')(x_4' - x_3')}{(x_2' - x_3') \cdot (y_4' - y_3') - (x_4' - x_3') \cdot (y_2' - y_3')},$$

$$a_{32} = \frac{(y_1' - y_2' + y_3' - y_4')(x_2' - x_3') - (x_1' - x_2' + x_3' - x_4')(y_2' - y_3')}{(x_2' - x_3') \cdot (y_4' - y_3') - (x_4' - x_3') \cdot (y_2' - y_3')},$$

$$a_{11} = x_2' - x_1' + a_{31}x_2' \qquad a_{12} = x_4' - x_1' + a_{32}x_4' \qquad a_{13} = x_1',$$

$$a_{21} = y_2' - y_1' + a_{31}y_2' \qquad a_{22} = y_3' - y_1' + a_{32}y_4' \qquad a_{23} = y_1'.$$

Inversely, we can project any point on the Q plane to the S_1 plane by the inverse of the transformation matrix \mathbf{T}^{-1} .

Fig. 2. Two-step projective transformation between perspective plane and road plane. In the first step, the perspective plane Q_1 is transformed to the unit square S_1 by the inverse mapping function \mathbf{T}_1^{-1} . In the second step, \mathbf{T}_2 transforms the square S_1 to the road plane Q_2 . Transformation from the perspective plane Q_1 to the road plane Q_2 can be direct by $\mathbf{T} = \mathbf{T}_1^{-1}\mathbf{T}_2$ [17].

Now, we consider three planes, the perspective plane Q_1 , the unit plane S_1 , and the road plane Q_2 , depicted in Fig. 2. We can map points on the perspective plane Q_1 to points on the road plane Q_2 in two steps: $Q_1 \xrightarrow{\mathbf{T}_1^{-1}} S_1$, and followed by $S_1 \xrightarrow{\mathbf{T}_2} Q_2$. The transformation can be directed from the perspective plane Q_1 to the road plane Q_2 by:

$$\mathbf{T} = \mathbf{T}_2^{-1} \mathbf{T}_1. \tag{3}$$

In the current work, the vehicle movement is also recorded using an accelerometer, which is placed inside the test vehicle. These data are later compared to the data obtained from the above procedure to evaluate the accuracy of the proposed method. The recorded acceleration data are numerically integrated to provide the vehicle velocity and position. The level of accuracy is simply 1 - Relative Error, where the error is defined by

Relative Error =
$$\frac{\|\hat{\mathbf{x}} - \mathbf{x}\|_2}{\|\mathbf{x}\|_2} \times 100\%,$$
(4)

where $\hat{\mathbf{x}}$ is the vector of the estimated position or velocity and \mathbf{x} is the true value, that is obtained from the accelerometer.

Experimental Procedures

The proposed method was evaluated with a simple experiment described following. The experiment only involved a vehicle. The vehicle was set to travel along a straight trajectory for a distance around 23 m. It was difficult to control the vehicle exact position. Figure 3 respectively show the vehicle initial and final positions. Four cones were placed on the four corners of the vehicle trajectory; see Fig. 3. These four cones were separated by 22.9 m distance longitudinally and 3.5 m distance laterally.

Fig.3. The test vehicle initial and final positions and the four cones used for orthorectification.

The vehicle movement was recorded by two means: a video camera and an accelerometer. The video camera recorded the vehicle movement at the rate of 25 fps and image size of 720×576 pixels. The accelerometer recorded at the sampling time of 0.1 s.

In addition, we also compute the vehicle coefficient m and l by minimizing

$$\operatorname{Error}(t) = a_n(t) - \alpha \, \frac{v_n^m(t) \cdot \Delta v_n(t - t_d)}{\Delta x_n^l(t - t_d)}.$$
(5)

All data a_n , Δv_n , Δx_n are from the current proposed method.

3 Results

Two sets of data are necessary for this study. The first set is obtained from the deployed computer-vision-based vehicle tracking methods. The second set is from the accelerometer.

Two different background subtractions in computer vision will be used separately: multilayer and Eigen background subtractions. The computer vision vehicle tracking provides the data of: frame number, blob number, blob area, x blob-centroid, y blob-centroid, and the position of the bottom-right corner of the blob. The frame number and the frame rate data are used to calculate the time associated with the frame number by:

Frame Time
$$t = \frac{\text{Frame Number}}{\text{Frame Rate}}$$
.

The frame rate is fixed at 25 fps. Only one vehicle is used in the experiment and it has dimensions of 4.7 m long, 1.8 m wide, and 1.8 m high.

The results of the current study are shown in Fig. 4 for multilayer algorithm and Fig. 5 for Eigen subtraction algorithm. The relative error, absolute error, and accuracy have been computed for every experiments; see Table 1. The results show that the tracking accuracy using multilayer background subtraction is better than that of Eigen background subtraction. Multilayer method has 96.6%position accuracy and 88.9% velocity accuracy; meanwhile Eigen method has 92.9% position accuracy and 84.3% velocity accuracy.

In Fig. 6, we compare the vehicle acceleration computed the GHR model and the measured one. The estimated GHR car-following parameters are m = 0.4 and l = 1.2 at 3.2% of relative error. These estimated parameters are within the range of most reliable estimated parameters according to findings of other researchers for GHR model [18].

Experiment no.	Relative error (%)					
	Position (m)		Velocity (m/s)			
	MultiLayer BGS	Eigen BGS	MultiLayer BGS	Eigen BGS		
1	3.41	2.9	13.1	6.9		
2	2.49	4.6	6.5	9.1		
3	2.40	4.4	8.4	4.0		
4	3.84	10.5	12.5	26.3		
5	4.37	9.4	10.9	13.1		
6	4.30	12.7	12.5	39.3		
7	3.07	5.2	13.5	11.2		

Table 1. The relative error of the tracked vehicle position by the computer vision technique with respect to the vehicle position obtained by integrating by the accelerometer data. The relative error is defined by Eq. 4.

Fig. 4. Comparison of the space-time diagram obtained from computer vision (multilayer algorithm) and from accelerometer for six experimental replications.

Fig. 5. Comparison of the space-time diagram obtained from computer vision (Eigen background subtraction algorithm) and from accelerometer for six experimental replications.

Fig. 6. Comparison of the Vehicle Acceleration between Accelerometer Data and GHR Model Prediction

4 Conclusions

The car-following model has important application in traffic and safety engineering. Unfortunately, finding the model parameters are often costly. For the reason, this research proposed a significantly low-cost method to determine the model coefficients. In the current method, the vehicle movement are recorded digitally and tracked by a computer vision technique. The obtained vehicle position is projected to the road plane with an orthographic projection technique. In the current experiment, to evaluate its accuracy, the method is used to track trajectory of a vehicle moving in a short-straight lane. From comparisons to the data obtained from an accelerometer, it is concluded that the current method is reasonably accurate. The results show that the tracking accuracy of multilayer background subtraction is better than that of Eigen background subtraction. The multilayer method has 96.6% position accuracy and 88.9% velocity accuracy; meanwhile, the Eigen method has 92.9% position accuracy and 84.3% velocity accuracy. The method estimates the car-following parameters to be m = 0.4 and l = 1.2 with 3.2% relative error. These estimated parameters are within the range of the most reliable GHR model parameters according to many references.

References

- BPS: Perkembangan jumlah kendaraan bermotor menurut jenis tahun 1987–2012 (2013). http://www.bps.go.id/linkTabelStatis/view/id/1413
- Morichi, S.: Long-term strategy for transport system in Asian megacities. J. East. Asia Soc. Transp. Stud. 6, 1–22 (2005)
- Gunawan, F.E.: Empirical assessment on factors affecting travel time of bus rapid transit. Int. J. Eng. Technol. 7(1), 327–334 (2015). http://www.ijetch.org/show-42-253-1.html
- Gunawan, F.E.: Design and implementation of discrete-event simulation framework for modeling bus rapid transit system. J. Transp. Syst. Eng. Inf. Technol. 4, 37–45 (2014). http://www.sciencedirect.com/science/article/pii/S1570667213601397

- Lumentut, J.S., Gunawan, F.E., Atmadja, W., Abbas, B.S.: A system for realtime passenger monitoring system for bus rapid transit system. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS, vol. 9012, pp. 398–407. Springer, Heidelberg (2015). https://dx.doi.org/10.1007/978-3-319-15705-4_39
- Lumentut, J.S., Gunawan, F.E., Diana, : Evaluation of recursive background subtraction algorithms for real-time passenger counting of bus rapid transit. Procedia Comput. Sci. 59, 445–453 (2015). http://www.sciencedirect.com/science/article/ pii/S1877050915020943
- 7. Walsh, D., Stewart, D., Luk, J., Tay, J.: The use and application of microsimulation traffic models. Austroads Publications Online (2006). https://www. onlinepublications.austroads.com.au/items/AP-R286-06
- Ryu, J., Kim, C., Chang, M., Kim, Y., Bae, S.: Simulation and speed classification of car following models. Proc. East. Asia Soc. Transp. Stud. 3, 123–133 (2001). http://easts.info/on-line/proceedings/vol3no2/320010.pdf
- 9. Gunawan, F.E.: Two-vehicle dynamics of the car-following models on realistic driving condition. J. Transp. Syst. Eng. Inf. Technol. 12, 68–75 (2012). http://www.sciencedirect.com/science/article/pii/S1570667211601943
- Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Oper. Res. 6, 165–184 (1958). http://www.jstor.org/stable/167610
- Hoogendoorn, S., van Zuylen, H.J., Schreuder, M.: Microscopic traffic data collection by remote sensing. Transp. Res. Rec. 1855, 121–128 (2007). http://dx.doi.org/ 10.3141/1855-15
- 12. Hoogendoorn, S., Schreuder, M.: Toward a robust method for microscopic traffic data collection. In: The 84th Annual Meeting of the Transportation Research Board
- Ranjitkar, P., Nakatsuji, T., Kawamura, A.: Car-following models: an experiment based benchmarking. J. East. Asia Soc. Transp. Stud. 6, 1582–1596 (2005). http://www.easts.info/on-line/journal_06/1582.pdf
- 14. Crist: Blob library for OpenCV, from Google Code (2012). https://code.google. com/p/cvblob/wiki/FAQ. Accessed 11 February 2015
- Yao, J., Odobez, J.M.: Multi-layer background subtraction based on color and texture. In: IEEE Conference on Computer Vision and Pattern Recognition, June 17–22, pp. 1–8 (2007). http://dx.doi.org/10.1109/CVPR.2007.383497
- Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000). http://dx.doi.org/10.1109/34.868684
- 17. Burger, W., Burge, M.: Principles of Digital Image Processing: Core Algorithms. Springer, Heidelberg (2009)
- Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. Part F 2, 181–196 (1999). http://www.sciencedirect.com/science/article/pii/ S136984780000005X