Interpolation

Fergyanto E. Gunawan, Dr. Eng.

March 19, 2014

Introduction

These slides provides the most important aspects of the lecturing materials for the course K0572 Numerical Methods for the session of Numerical Interpolation.

Interpolation Methods

- Lagrange's method
- Newton's method

The Newton's method is computationally more superior than the Lagrange's method.

We assume: we have $n+1$ pairs of data $\left\{x_{i}, y_{i}\right\}$

Lagrange's Method

Interpolation equation:

$$
\begin{array}{r}
P_{n}(x)=\sum_{i=0}^{n} y_{i} l_{i}(x) \\
l_{i}(x)=\prod_{j=0, j \neq i}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
\end{array}
$$

n - The order of the polynomial, for the linear function, $n=1$
y_{i} - The y-coordinate of the data
l_{i} - The basis or cardinal function
i - The index where $i \in(0, \ldots, n)$

Lagrange's Method

The Basis Functions $l_{i}(x)$ for the Linear Case

$$
n=1
$$

$$
\begin{aligned}
l_{0}(x) & =\frac{x-x_{1}}{x_{0}-x_{1}} \\
l_{1}(x) & =\frac{x-x_{0}}{x_{1}-x_{0}}
\end{aligned}
$$

Lagrange's Method

The Basis Functions $l_{i}(x)$ for the Quadratic Case

$$
n=2
$$

$$
\begin{aligned}
l_{0}(x) & =\frac{x-x_{1}}{x_{0}-x_{1}} \cdot \frac{x-x_{2}}{x_{0}-x_{2}} \\
l_{1}(x) & =\frac{x-x_{0}}{x_{1}-x_{0}} \cdot \frac{x-x_{2}}{x_{1}-x_{2}} \\
l_{2}(x) & =\frac{x-x_{0}}{x_{2}-x_{0}} \cdot \frac{x-x_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Newton's Method

Interpolation equation:

$$
\begin{aligned}
P_{n}(x) & =a_{0}+\left(x-x_{0}\right) a_{1}+\left(x-x_{0}\right)\left(x-x_{1}\right) a_{2}+\cdots \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right) a_{n}
\end{aligned}
$$

Coefficients:

$$
a_{0}=y_{0}, a_{1}=\nabla y_{1}, a_{2}=\nabla^{2} y_{2}, \cdots, a_{n}=\nabla^{n} y_{n}
$$

Divided differences:

$$
\begin{aligned}
\nabla y_{i}= & \frac{y_{i}-y_{0}}{x_{i}-x_{0}}, \quad i=1,2, \ldots, n \\
\nabla^{2} y_{i} & =\frac{\nabla y_{i}-\nabla y_{1}}{x_{i}-x_{1}}, \quad i=2,3, \ldots, n \\
\nabla^{3} y_{i}= & \frac{\nabla^{2} y_{i}-\nabla^{2} y_{2}}{x_{i}-x_{2}}, \quad i=3,4, \ldots n \\
& \vdots \\
\nabla^{n} y_{n}= & \frac{\nabla^{n-1} y_{n}-\nabla^{n-1} y_{n-1}}{x_{n}-x_{n-1}}
\end{aligned}
$$

x_{0}	y_{0}				
x_{1}	y_{1}	∇y_{1}			
x_{2}	y_{2}	∇y_{2}	$\nabla^{2} y_{2}$		
x_{3}	y_{3}	∇y_{3}	$\nabla^{2} y_{3}$	$\nabla^{3} y_{3}$	
x_{4}	y_{4}	∇y_{4}	$\nabla^{2} y_{4}$	$\nabla^{3} y_{4}$	$\nabla^{4} y_{4}$

Newton's Method

Matlab Implementation

```
function p = fun_newton_interp(xd, yd, x)
%Interpolation function using Newton method
% Description: This function performs interpolation using Newton method.
%
% Usage : }p=\mathrm{ fun_newton_interp(xd, yd, x)
%
% Fergyanto E. Gunawan (f.e.gunawan@gmail.com)
% Jakarta, March 11, }201
m}=\mathrm{ length(xd); % number of data
% Calculating coefficients a
a = yd;
for k = 2 :m
    for i = k :m
        a(i)=(a(i) -a(k-1))/(xd(i) - xd(k-1));
    end
end
% function evaluation
p = a(m)*ones(length(x),1);
for k=m-1: -1 : 1
    p=a(k) +(x - xd(k)).*p;
end
```

