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Experimental Type Research Questions 

By: Ir. Togar A. Napitupulu, MS., MSc., Ph.D 

 

Consider the following two cases: 
 

1. Implementing a newly improved marketing technique might be claimed to reach and 

persuade customers to buy on average more than 100 customers per month.   Sample of 

sales person were trained with the new technique and observed their monthly selling. 

  The hypothesis for such experimentation is  

  H0 : μ = 100 

  H1:  μ > 100 

where μ is the population average of the number of customers persuaded by the sales. 

 From the sample of say, n sales person, we calculate the average sales and the sample 

variance.  Using these two information  t-statistics and p-value for one sided test (see H1, 

having one direction “less than”)can be calculated.  If this is less than α/2, then we enough 

evidence from the sample to reject H0. 

2. We might want to compare two different method of teaching or training our employee and 

we would like to know the most effective method in terms of their productivity.  The two 

methods can be thought of as two different treatment in lab such that one group of 

employee is being treated with one of the method and the other group being treated with 

the other method.  The hypothesis to be tested might be: 

 

 H0: μ1 = μ2 versus 

 H1: μ1 > μ2 

 

Because we are suspecting that method one is more effective than method two.  μ1 and μ2 

are the population mean of the first and the second method respectively.  This can be tested 

using t-statistics (t test), testing the mean of two populations.   Again we can use p-value as 

decision rule whether to reject H0 or not enough evidence from sample to reject H0. 

 

Both cases are called one-factor problem.  The factor is the treatment with two levels.  In the 

first case, the treatment is the newly improved marketing method and the samples were taken.  

The other level is without sample, i.e., simply a constant where the value can be thought of as 

had been derived from previously taken samples.  In the second case, the levels are method 1 
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and method 2 and two sets of samples were taken from both. The following is a case where 

there are more than two levels. 

 

3. One-Way  ANOVA:  Sometimes we might want to test three or more treatments, or to test 

the mean of three or more population.  In such case we can not use t-test anymore.  We 

have to resort to a method called Analysis of Variance (ANOVA).  The hypothesis for such 

problem is: 

  H0: μ1 = μ2 = μ3 =  ….  = μk   versus 

  H1: At least two of them are not equal to one another 

where k is the number of treatments or populations.  The test statistic used is F-stat, or F –

test.  Again p-value can be used to decide whether to reject H0 or not enough evidence to 

reject H0.  When H0 is rejected, then we still need to test which particular pairs is the one 

that is not equal to one another.  To test which of the pairs is not equal, we use “Tukey-

Kramer Procedure”.  When there are n populations to test or n means, then there are 

[𝑛(𝑛 − 1)] 2⁄  pairs to test.  For example, we might want to test more than two methods of 

marketing and want to know which one of them that has the greater impact.  Another 

example is we might want to know which of three of more methods of impact of training on 

our employee and which one is the best among them.   

Notes on strategy of experimental design:  Experimental units (such as students, mice, 

company, products, etc., provide the heterogeneity that leads to experimental error .   To 

avoid this, we randomly assigned the factor levels to the experimental units. 

ASSUMTION:  The k populations are independent and normally distributed with mean 

𝜇1, 𝜇2, … , 𝜇𝑘  and common variance 𝜎2.  This assumption is supported by the 

randomization. 

THE MODEL: 

Let 𝑦𝑖𝑗  denote the jth observation from the ith treatment.  Each observation may be written 

in the form: 

 𝑌𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗   ……………………………………  (  ) 

Where 𝜖𝑖𝑗  measures the deviation of the jth observation of the ith sample from the 

corresponding treatment mean – the same as the error term in regression.  Another way of 

writing this equation is by substituting  𝜇𝑖 = 𝜇 + 𝛼𝑖 , subject to the constraint ∑ 𝛼𝑖
𝑘
𝑖=1 = 0.  

Hence we may write 

𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗. 
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And  𝛼𝑖 is called the effect of the ith treatment; μ is the grand mean of all the 𝜇𝑖’s.  The 

above hypothesis then now can be replaced by : 

𝐻0: 𝛼1 = 𝛼2 =  … = 𝛼𝑘 = 0. 

𝐻1: 𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝛼𝑖
′𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑧𝑒𝑟𝑜. 

Testing the hypothesis is based on comparison of two independent estimates of the 

common population variance 𝜎2 based on the following Sum-of-squares Identity: 

∑ ∑(𝑦𝑖𝑗 − �̅�..)
2

𝑛

𝑗=1

=

𝑘

𝑖=1

𝑛 ∑(�̅�𝑖. − �̅�..)
2

𝑘

𝑖=1

+ ∑ ∑(𝑦𝑖𝑗 − �̅�𝑖.)
2

𝑛

𝑗=1

𝑘

𝑖=1

 

That is  

   SST = SSA + SSE 

Where  

 SST = total sum of squares. 

 SSA = treatment sum of squares. 

 SSE = error sum of squares (within treatment sum of squares). 

It can be shown that expected value of SSA 

   𝐸(𝑆𝑆𝐴) = (𝑘 − 1)𝜎2 + 𝑛 ∑ 𝛼𝑖
2𝑘

𝑖=1 . 

If H0 is true, and thus each αi in the above formula is equal to zero,  then 

   𝐸(𝑠1
2) = 𝐸 (

𝑆𝑆𝐴

𝑘−1
) = 𝜎2, 

Or that 𝑠1
2 is an unbiased estimate of 𝜎2.  However, if H1 is true, we have 

  𝐸(𝑠1
2) = 𝐸 (

𝑆𝑆𝐴

𝑘−1
) = 𝜎2 +

𝑛

𝑘−1
∑ 𝛼𝑖

2, 

that is, 𝑠1
2 estimates 𝜎2 plus an additional term, which measures variation due to the 

systematic effects.  We also know that another independent estimator of 𝜎2 based on k(n-1) 

degrees of freedom is the familiar 𝑠2, 

                      𝑠2 =
𝑆𝑆𝐸

𝑘(𝑛−1)
. 

Now, when H0 is true then, the ratio 𝐹 = 𝑠1
2 𝑠2⁄  is a random variable having the F-

distribution  with k-1 and k(n-1) degrees of freedom.  Since 𝑠1
2 overestimates 𝜎2 when H0 is 

false, we have a one-tailed test with the critical region entirely in the right tail of the F 
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distribution; That is, we have F-ratio for testing equality of the means (see hypothesis 

above). 

EXAMPLE #1 

Four suppliers of materials for parachutes are using different fiber materials.  We need to 

test whether the strength of the fibers produced by each suppliers are equal or not.  The 

following is the data on the tensile strength of the materials. 

 

 

 

 

 

The hypothesis  then is: 

𝐻0: 𝛼1 = 𝛼2 =  … = 𝛼4 = 0. 

𝐻1: 𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝛼𝑖
′𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑧𝑒𝑟𝑜. 

 

Here is the result using EXCEL: 

 

Anova: Single Factor      

       

SUMMARY       

Groups Count Sum Average Variance   

Supplier 1 5 97.6 19.52 7.237   

Supplier 2 5 121.3 24.26 3.683   

Supplier 3 5 114.2 22.84 4.553   

Supplier 4 5 105.8 21.16 8.903   

       

       

ANOVA       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 63.2855 3 21.095167 3.461629 0.041366 3.238872 

Within Groups 97.504 16 6.094    

       

Total 160.7895 19         

Supplier 1 Supplier 2 Supplier 3 Supplier 4 

18.5 26.3 20.6 25.4 

24.0 25.3 25.2 19.9 

17.2 24.0 20.8 22.6 

19.9 21.2 24.7 17.5 

18.0 24.5 22.9 20.4 
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Since Fstat = 3.46 is greater than Ftable (3,16) = 3.24, hence we reject H0, or at least one of the 𝛼𝑖
′ 

is not equal to zero.  We can also use p-value to make conclusion about the hypothesis, that 

is the probability of getting an F statistic of 3.4616 or larger when the null hypothesis is true, 

is 0.0414.  Because p-value is less than the specified α of say 5 % or 0.05, we can reject the 

null hypothesis, or at least one or more population means are significantly different. To 

determine which suppliers differ, we can use a multiple comparison procedure such as 

Tukey-Kramer Procedure as follows. 

 

The Tukey-Kramer Procedure 
This procedure is one among the procedures available. First we compute the differences, 

�̅�𝑖 − �̅�𝑗 (where i ≠ j) among all pairs of means.  Then we compute critical range using the 

following formula: 

 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑟𝑎𝑛𝑔𝑒 = 𝑄𝑈√
𝑀𝑆𝑊

2
[

1

𝑛𝑖
+

1

𝑛𝑗
] 

Where 𝑄𝑈 is the upper-tail critical value from a studentized range distribution (See Table in 

one of the Text) having c degrees of freedom in the numerator and n – c degrees of freedom 

in the denominator.  A specific pair is significantly different  if the absolute difference in the 

sample means |�̅�𝑖 − �̅�𝑗| is greater than the critical range.  In the example above, the 

following are the six comparison: 

 

1. |�̅�1 − �̅�2| = |19.52 − 24.26| = 4.74 

2. |�̅�1 − �̅�3| = |19.52 − 22.84| = 3.32 

3. |�̅�1 − �̅�4| = |19.52 − 21.16| = 1.64 

4. |�̅�2 − �̅�3| = |24.26 − 22.84| = 1.42 

5. |�̅�2 − �̅�4| = |24.26 − 21.16| = 3.10 

6. |�̅�3 − �̅�4| = |22.84 − 21.16| = 1.68 

 

  𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑟𝑎𝑛𝑔𝑒 = 4.05√[
6.049

2
] [

1

5
+

1

5
] = 4.4712. 

 

If we look at the above six alternative comparisons, only alternative 1, i.e., the difference 

between Supplier 1 and 2, that are significantly different at 5 % significant level. 

 

4. Question might also be raised as to whether two or more factor interacting one another in 

affecting a variable of interest to researcher.  For example, there might be an interaction of 

types of teaching or training the length of training time.  Such research question can be 

analyzed using two-way classification experimental design or two way factorial 

experimentation if you have two factors that we think are interacted one another.  

 

EXAMPLE #2 
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Suppose the two types of course (methods) are Traditional and Online.  The length of course 

are Condensed and  Regular.  The company assigned 10 clients randomly to each of the four 

cells and record the students’ score on ACT.  The following are the data: 

 

Method Condensed Regular Method Condensed Regular 

traditional 26 34 online 27 24 

traditional 18 28 online 21 21 

traditional 27 24 online 29 16 

traditional 24 21 online 32 19 

traditional 25 35 online 30 22 

traditional 19 23 online 20 19 

traditional 21 31 online 24 20 

traditional 20 29 online 28 24 

traditional 21 28 online 30 23 

traditional 18 26 online 29 25 

 

The result using EXCEL is as follows: 

 

Anova: Two-Factor With Replication    

       

SUMMARY Condensed Regular Total    

traditional          

Count 10 10 20    

Sum 219 279 498    

Average 21.9 27.9 24.9    

Variance 11.2111111 20.9889 24.7263158    

       

online          

Count 10 10 20    

Sum 270 213 483    

Average 27 21.3 24.15    

Variance 16.2222222 8.01111 20.0289474    

       

Total          

Count 20 20     

Sum 489 492     

Average 24.45 24.6     

Variance 19.8394737 25.2     
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ANOVA       
Source of 

Variation SS df MS F P-value F crit 

Sample 5.625 1 5.625 0.39870053 0.53175028 4.11316522 

Columns 0.225 1 0.225 0.01594802 0.90020864 4.11316522 

Interaction 342.225 1 342.225 24.2569403 1.8882E-05 4.11316522 

Within 507.9 36 14.1083333    

       

Total 855.975 39         

 

The first to check is the interaction column in the ANOVA.  The p-value =0.0000188 which is 

less than 0.05 (5 %) significant level.  Hence there is interaction effect between length of 

course and type of course (the two factors).  Since the interaction is significant, then we 

cannot conclude on the two main effects, i.e.,  type of course and length of course.  For 

example, we cannot conclude that there is no effect even though both have p-values grater 

than 0.05.  To ensure the highest ACT score, the company should use the traditional 

approach when offering regular course (27.9 vs 21.9); but use the online approach when 

offering the condensed courses (27 vs.21.3). 

 

5. In marketing, we might want to study contribution of an Attribute (or Factor) of a product on 

the utility (or part-worth) for the customers.  For example, a product might has the following 

factors:  (1) Package Design, labeled A, B, C, (given possible value of 1, 2, or 3by the 

researcher);  (2) Brand name, labeled BR1, BR2, BR3 (again, given possible value of 1, 3, or 3, 

by the researcher);  (3) Price, labeled P1, P2, and P3 (having possible value of Rp. 100 rb, Rp. 

200 rb, or Rp. 400 rb.); (4) Good house-keeping seal, labeled, yes or no (having possible value 

of 1 of 2); and (5)  money-back-guarantee, labeled ye or no (also having value of 1 or 2).  In 

fact we can also calculate the contribution or utility of a combination of attribute with a 

particular combination of their levels.  The statistical tool that can address such research 

question is the “Conjoint (consider it jointly)” Analysis.  You can use SPSS to do this for you. 

The model is : 

                          𝑌𝑖𝑗 = ∑ ∑ 𝛽𝑖𝑘𝑚𝑋𝑗𝑘𝑚 + 𝜀𝑖𝑗
𝑀𝑘
𝑚=1

𝐾
𝑘=1   ……………………………………  (3) 

Where 

 J = product, 

 Yij = rating provided by respondent i on product j, 

 αikm  = utility or part-worth of the mth level (m=1,2,… Mk ) of the kth attribute, 

 Mk = number of level of the kth attribute, 

 K = number of attribute, 
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Xjkm = dummy variables that take on the value 1 if the mth level of the kth attribute is 

  
present in product j and the value 0 otherwise, 

 

εij = error term assumed to be normally distributed with zero mean and variance σ2. 

 

 

6. ONE COMMON MISS-USED OF F-test (ANOVA) IN REGRESSION: Testing 
Simultaneous Effect of Independent Variables 

 
In regression analysis of the following model (without loss of generality, let’s have three 

independent variables): 

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜀 … … … … … … … … (1) 

 

one might wants to test whether the three independent variables have an impact 

simultaneously on the dependent variable Y.  It is common to have this tested (mistakenly) by 

using the F-test from the ANOVA of the regression, or equivalently by looking at 

corresponding p-value.  It is mistaken because the hypothesis corresponding to such F-test is:  

 

 H0:  𝛽1 = 𝛽2 = 𝛽3 = 0  against 

 H1:  At least one of the betas is not equal to zero 

 

So for example if we reject H0, it only means that one or more of the 𝛽𝑖  is not equal to zero 

and to know which one that is not equal to zero, can be tested partially using t-test.  

 

How then we can test hypothesis to find out the effect of all independent variables 

simultaneously?  We approach this by introducing a new variable into equation (1), that is, 

multiplication of all independent variables as follows: 

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋1𝑋2𝑋3 + 𝜀 … … … … … … … … (2) 

 

Now, to test such hypothesis then is equivalent to testing  

 

 H0:  𝛽3 = 0  against 

 H1:  𝛽3 ≠ 0   

 

If from the data there enough evidence to reject H0 then it can be concluded that the three 

independent variables interact (hence the term to test the “interaction” of the independent 

variables) or simultaneously has an impact on the dependent variable Y.   Researchers might 

want to test the impact of interaction of pairs of the independent variables.  In such case, we 

would have to introduce three more independent variables into equation (2) as follows: 
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𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋1𝑋2 + 𝛽5𝑋1𝑋3 + 𝛽6𝑋2𝑋3 + 𝛽7𝑋1𝑋2𝑋3 + 𝜀 … (3) 

 

And testing the impact of the interaction would be testing the corresponding betas, i.e., 𝛽𝑖, i 

=4,5,6,7. 

 


